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Extremal principle for the steady-state selection in driven lattice gases with open boundaries
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This paper investigates the steady states of one-dimensional driven lattice gases with open boundary con-
ditions. It shows how the extremal principle proposed recently by Popkov and Schu¨tz can be modified to apply
to more general cases. Monte Carlo simulations are presented for a one-dimensional totally asymmetric simple
exclusion process with nearest neighbor repulsion under parallel update as an example. The simulations enable
one to guess the exact phase diagram for this particular lattice gas with deterministic bulk dynamics, by fitting
the data to analytic formulas, which appear to be exact in the thermodynamic limit.
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Driven diffusive lattice gases serve as simplified mod
for a wide variety of problems, just to mention traffic flo
@1#, kinetics of protein synthesis@2#, and fast superionic con
ductors @3#. One-dimensional driven lattice gases like t
asymmetric simple exclusion process~ASEP! provide more
convienient prototypes to study genuine nonequilibrium
havior, since they are easy to simulate and there is cons
able recent progress in analytic solutions of specific mod
@4#. Ion diffusion in zeolites@5# and single file diffusion of
colloid particles in narrow channels@6# are interesting ex-
perimental realizations of one-dimensional diffusive s
tems. In the sequel I consider a gas of identical particles w
hardcore repulsion on a one-dimensional lattice, subjec
short range interactions and to a local conservation l
driven to the right by some kind of external field. The sp
cific example, I am dealing with in the Monte Carlo~MC!
simulations, is defined by the transition rules~4! @7#.

For periodic boundary conditions a genuine driven o
dimensional lattice gas approaches a steady state of con
densityr with some constant nonequilibrium currentj (r).
In the limit of large system size the current density~CD!
relation j (r), measured in systems with fixed density a
periodic boundary conditions, characterizes the bulk beh
ior of the model under consideration and shows up, e.g.
fundamental diagram in traffic flow. Clearlyj (0)5 j (1)50
due to a total lack of particles resp. holes and for the m
simple models, like the ASEPj (r) has a single maximum in
between. In general the CD relation may have seve
maxima with additional minima in between~see Fig. 1 for a
example!. Krug @8# asked for the emerging steady state
gas with given CD relationj (r) and given injection rates
$a% and drainage rates$b%. He partially answered the ques
tion by proposing a maximum principle for the nonequili
rium current: j 5maxrP[0,r0] j (r). The steady state is th

maximum of the CD relationj (r) over the interval@0,r0#,
where the boundary density isr0 at the left side and zero a
the right side. Here the boundary densities were the m
densities at the leftmost and rightmost lattice site. For sim
examples with an injection ratea and a drainage rateb there
exist monotonous relations between these boundary dens
and the rates, e.g.,r25a andr1512b for the ASEP. So
one can plot the phase diagram equally well in terms of
ratesa andb or in terms of the boundary densities. For mo
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complicated models we may have a whole set of microsco
injection and drainage rates$a%5$a1 ,a2 , . . . % and $b%
5$b1 ,b2 , . . . %, which may vary independently, so that it
unfeasible to plot the high dimensional phase diagram
terms of only two boundary densities. Due to this fact I u
the microscopic rates as variables in plots of phase diagra

Based on work@9#, that explains the phase diagram of th
ASEP in terms of the collective velocity

vc5
] j ~r!

]r
, ~1!

describing the propagation of a local perturbation in a sys
with constant densityr, and the shock velocity

vs5
j 12 j 2

r12r2
, ~2!

of a shock with limiting densitiesr1 and r2 , Popkov and
Schütz @10# proposed the extremal principle

j 5 max
rP[r1 ,r2]

j ~r! for r2.r1

~3!
j 5 min

rP[r2 ,r1]
j ~r! for r2,r1 ,

FIG. 1. Bulk CD relationj (r) for deterministic bulk dynamics
(p50) together with MC data for open boundary conditions tak
along lines with boundary rates a5c2b for c
51.5,1.0,0.6,0.3,0.1 from top to bottom.
©2001 The American Physical Society03-1
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with left boundary densityr2 and right boundary density
r1 . For CD relations with two maxima this principle pre
dicts a new minimal current phase that was confirmed
MC simulations@10#. Recently, Antal and Schu¨tz @11# pre-
sented data for a lattice gas with attractive interactions
contained an additional phase not predicted by the extre
principle ~3!, when using boundary densitiesr25a and
r1512b, while the rest of the phase diagram was predic
faithfully. This casts some doubt on the general validity
Eq. ~3!. In the sequel I discuss MC data for another on
dimensional lattice gas, where the minimal current phas
absent. The goal of this paper is then to interpret Eq.~3! in a
way that the aforementioned cases can be included.

Let us consider a lattice gas of particles driven to the ri
according to the rules

1100→1010 with probability 12p,

1101→1011 with probability 12p,
~4!

0100→0010 with probability 12p,

0101→0011 with probability p,

wherepP@0,1#. The CD relation for deterministic bulk dy
namics atp50 is plotted in Fig. 1. Recently a rigorous der
vation of its shape was given@12#. A small but finitep.0
leads to a current density relation with differentiable extre
and decreased currents for the maxima but a increased
rent j min.0 for the minimum. Note that forp51/2 the
model is just the totally asymmetric simple exclusion proc
under a parallel stochastic update with a single humped p
bolic CD relation. For some value ofp in between the mini-
mum in the CD relation vanishes. We first discuss the de
ministic casep50 and afterwards check the influence
stochastic parallel dynamics for a value ofp50.0625. The
nearest neighbor repulsion leads to a zero current s
( . . . 010101 . . . ) at density r51/2. Using a deterministic
parallel update leads to a piecewise linear CD relation w
maximal currentj 51/3 for the densitiesr51/3 andr52/3
and zero current forr50,1/2,1 ~see Fig. 1!. The creation
rates$a% at the left boundary and the annihilation rates$b%
at the right boundary are chosen as

1u00→1u10 with probability a,

1u01→1u11 with probability a,
~5!

11u0→10u0 with probability b,

01u0→00u0 with probability b.

The hopping rates of the leftmost and the next to rightm
site are governed by the bulk rules in conjunction with t
constant dummie boundary sites added in Eq.~5!. Note that
the automaton is symmetric under interchange ofA and 0,
combined with a reversion of the driving direction. O
choice of boundary conditions renders the minimal curr
state j (1/2)50 at densityr51/2 unstable and thereby de
stroys the minimal current phase.
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I simulated a system of sizeL55600 upto 106 time steps
to obtain averages for current and density after an initial5

time steps necessary to reach the steady state. The resu
the simulations are displayed in Figs. 1–3. Figure 2 sho
the steady-state currents for a system loaded with ratea,
when the left boundary determines the steady state. The
per curve~triangles! is the resulting currentj (0)(a) when
one fills an initially empty system, settingb51 at the right
boundary. The lower curve~diamonds! is the resulting cur-
rent j (1/2)(a), where initially the zero current stat
( . . . 010101 . . . ) wasprepared and stabilized by forbiddin

FIG. 2. Steady-state currents in a ‘‘semi-infinite’’ system f
deterministic bulk dynamics as functions of the injection ratea.
The upper curve~triangles! is j (0)(a) for an initially empty system
and the lower curve~diamonds! is j (1/2)(a) for a system prepared
initially in the current zero state with density 1/2. Symbols den
MC data and full lines analytical fits as given in the text.

FIG. 3. Phase diagram for deterministic bulk dynamics a
function of the injection ratea and the drainage rateb. Diamonds
denote the MC data for the first order transitions and the connec
lines denote the analytical fits. The full line with two arrows follow
a typical path of constant current and density, but with dens
jumps at the phase transitions.
3-2
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the process 01u0→00u0, while allowing the 11u0→00u0
with probability 1 at the right boundary. The boundary co
ditions of the right side were choosen in a way that no sh
traveled from the right to the left boundary for any value
a, to mimic the behavior of a semi-infinite system. Inspir
by the result of the analytical solution for an ASEP with ful
parallel update@13# I conjectured the following analytica
forms for the currents:

j (1/2)~a!5
a

112a
, j (0)~a!5

a2a21a3

112a3
. ~6!

In Fig. 2 these formulas are plotted as full lines, which p
fectly fit the MC data denoted by symbols. It turns out th
these two currents are enough to construct the phase dia
displayed in Fig. 3. I find three lines of first order transitio
between low density phases wherea determines the bulk
density r5r2(a) and the steady-state currentj (a), and
high density phases, whereb determines these values. Alon
the line a5b, the current is equal toj (1/2)(a), while it is
equal toj (0)(a) along the lineb51. Together with the con-
dition that the current is continous at the transition this
ables us to derive the analytical expression

b5
a2a21a3

122a12a2
, ~7!

for the upper curved transition line in Fig. 2, simply b
equating the two currents of Eq.~6! with a5b in j (1/2)(a).
The lower line then follows by symmetry. I expect Eqs.~6!
and~7! and corresponding formulas for the densityr, which
follow via the CD relation, to be exact analytical results
the thermodynamic limit. Figure 1 displays, besides the b
CD relation measured in systems with periodic bound
conditions, MC data forj (r) taken along linesa5c2b for
c51.5,1.0,0.6,0.3,0.1 from top to bottom. The data l
modulo finite size effects, on the bulk CD relation but exhi
density jumps at the transition lines, while the current
continous.

How can we explain these findings in accordance with
extremal principle~3!? The crucial question is how th
‘‘boundary’’ densitiesr2 andr1 are defined. For the ASEP
it is possible to take the reservoir densitiesa and 12b, but
this turns out to be inadequate for more complicated syste
As it stands Eq.~3! tells us about the evolution of a shoc
with limiting densities r2 and r1 @10#. In the caser2

,r1 we havevs.0 for j 1. j 2 andvs,0 for j 1, j 2 , i.e.,
the region of smaller current grows and vice versa forr2

.r1 . In addition if there is a minimum ofj (r) in the in-
terval @r2 ,r1# the shock will be unstable and split into tw
shocks with limiting densitiesr2 ,rmin andrmin ,r1 , evolv-
ing to the left resp. right, thereby creating the minimal c
rent phase. Such a steady state we may call bulk domina
Similar considerations apply for the caser2.r1 , where a
maximal current phase can occur. But how arer2 and r1

connected to the microscopic boundary conditions$a% and
$b%? Due to the short range nature of the interactions
expectsr2($a%) to be a function only of the$a% and of bulk
06710
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properties. Any influence of the$b% must be mediated by the
bulk state@r, j (r)# via a shock as explained above. Th
r2($a%) contains all the bulk densities of a semi-infini
system that are supported~or controlled! by some value of
the rates$a%. This can be only bulk densities wherevc.0 so
that a perturbation caused by a small change of the$a% can
spread into the bulk. In addition I include bulk dominate
regions wherer and j are constant under variation ofa into
r2($a%) and j 2($a%) if they can be reached by tuning th
rates$a%.

For every lattice gas with a single hump in the CD re
tion this choice implies that one has alwaysr2,r1 and
therefore only the minimization part of Eq.~3! is needed. If
the maximum current phase occurs it is already containe
the relationsr2($a%) and r1($b%). The advantage of this
choice of r2 and r1 is, that the reentrance transition ob
served in@11# is now predicted by Eq.~3! sincer1 in our
definition, after reaching the maximal current phase fro
above with further increase of the drainage rateb increases
again. The minimization part of Eq.~3! then prefersr1 in-
stead of the maximal current phase offered by the inject
side.

Generally the relationsr2($a%) andr1($b%) have some
nonuniversal dependence of the microscopic transition ra
as the CD relation itself depends on the bulk transition pr
abilities, and they are needed as input to determine the p
diagram via Eq.~3!. In our example the bulk CD relation ha
two branches withvc.0 so r2($a%) and j 2($a%) can be
double valued relations that is indeed the case for our ch
of boundary conditions, as can be seen in Fig. 2. For a gi
set of $a% and $b% we have to put all four combinations o
r2(0)($a%), r2(1/2)($a%), r1(0)($b%), and r1(1/2)($b%) in
Eq. ~3!. This leads to

min$ j „r2(0)~a!…, j „r1(0)~b!…%, ~8!

min$ j „r2(0)~a!…, j „r1(1/2)~b!…%, ~9!

max$ j „r1(1/2)~b!…, j „r2(1/2)~a!…%, ~10!

min$ j „r2(1/2)~a!…, j „r1(0)~b!…%, ~11!

where just the smaller or larger of both currents is chos
Extremalization on the whole interval@r2 ,r1# as in Eq.~3!
is not necessary since the extremal current phases sele
thereby are already contained in our definition of the den
ties. The conditions~8!–~11! determine unambigously th
phase diagram of Fig. 3. Presumably, Eqs.~8!–~11! are suf-
ficient to determine the phase diagram for all double hum
CD relations. Note that in our model there isj „r2(0)(a)…
. j „r2(1/2)(a)… for all a and j „r1(0)(a)…. j „r1(1/2)(a)… for
all b. Thus Eqs.~9!–~11! imply ~8!. Figure 3 lacks any kind
of extended bulk dominated extremal current phases. T
has slightly different reasons for the maximal current pha
and the minimal current phase. The lack of maximal curr
phases clearly is due to the deterministic bulk dynam
which prevents the necessary overfeeding effect@7,14#. Such
phases immediately appear if one allows for probabilitiesp
,1 in Eq. ~4!. The absence of the minimal current phase
3-3
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BRIEF REPORTS PHYSICAL REVIEW E 63 067103
as we have seen, due to the fact, that it is instable for
choice of boundary conditions. To check these claims I p
formed simulations with a stochastic parallel update set
p50.0625. Figure 4 displays the phase diagram, again m
sured forL55600. Three different maximal current phas
appear in the rectangles visible in the upper right corner.
off diagonal ones contain the two pure maximal curre

FIG. 4. Phase diagram for stochastic bulk dynamicsp
50.0625) as a function of the injection ratea and the drainage rate
b. Diamonds denote the MC data for the phase transitions.
e

a

.

06710
ur
r-
g
a-

e
t

phases of high and low density. The diagonal one conta
both maximal current phases separated by a diffusing sh
and thereby marks the area~instead of a line!, where the first
order transition between the pure maximal current pha
occur~see remark@16# of @10#!. In contrast the minimal cur-
rent phase is still restricted to the single point in the low
left corner of Fig. 4, where four lines of first order transitio
meet. To stabilize it in a finite range one has to supress
processes 1u01→1u11 and 01u0→00u0 at the boundaries
The phase diagram of Fig. 4 can be obtained by apply
Eqs.~8!–~11! to the apropriate currents measured in ‘‘sem
infinite’’ systems. In conclusion I showed how the pha
diagram of some one-dimensional lattice gases with o
boundaries can be obtained by the extremal principle~3!. We
argued that the boundary densities used in Eq.~3! are the
bulk densities of a semi-infinite system and that they
restricted to densities, where the collective velocityvc allows
a perturbation by the boundary to move into the bulk. T
continous transitions to a extremal current phase are alre
present in these boundary densities, while the first order t
sition mediated by a shock of finite height are determined
Eqs. ~8!–~11!. More complicated systems are likely to lea
to new surprises, just to mention systems with inhomo
nious steady states, which occur frequently in higher dim
sions@15# but also in one-dimensional two species syste
with spontaneously broken symmetry@16#.
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