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Extremal principle for the steady-state selection in driven lattice gases with open boundaries
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This paper investigates the steady states of one-dimensional driven lattice gases with open boundary con-
ditions. It shows how the extremal principle proposed recently by Popkov andzSzdmibe modified to apply
to more general cases. Monte Carlo simulations are presented for a one-dimensional totally asymmetric simple
exclusion process with nearest neighbor repulsion under parallel update as an example. The simulations enable
one to guess the exact phase diagram for this particular lattice gas with deterministic bulk dynamics, by fitting
the data to analytic formulas, which appear to be exact in the thermodynamic limit.
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Driven diffusive lattice gases serve as simplified modelscomplicated models we may have a whole set of microscopic
for a wide variety of problems, just to mention traffic flow injection and drainage ratefx}={a,a,, ...} and {B}
[1], kinetics of protein synthes[®], and fast superionic con- ={B1,82, ...}, which may vary independently, so that it is
ductors[3]. One-dimensional driven lattice gases like theunfeasible to plot the high dimensional phase diagram in
asymmetric simple exclusion proce@SSEP provide more terms of only two boundary densities. Due to this fact | use
convienient prototypes to study genuine nonequilibrium bethe microscopic rates as variables in plots of phase diagrams.
havior, since they are easy to simulate and there is consider- Based on work9], that explains the phase diagram of the
able recent progress in analytic solutions of specific model§SEP in terms of the collective velocity
[4]. lon diffusion in zeolited5] and single file diffusion of 9i(p)
colloid particles in narrow channe[§] are interesting ex- Uc:_p, (1)
perimental realizations of one-dimensional diffusive sys- ap

tems. In the seq_uel | consider agas Of |dent|ca_| partlclgs WIﬂziescribing the propagation of a local perturbation in a system
hardcore repulsion on a one-dimensional lattice, subject tQith constant density, and the shock velocity
short range interactions and to a local conservation law, ’

driven to the right by some kind of external field. The spe- jo—]-
cific example, | am dealing with in the Monte CarMC) Us=
simulations, is defined by the transition rul@s [7].

For periodic boundary conditions a genuine driven one-of a shock with limiting densitiep, andp_, Popkov and
dimensional lattice gas approaches a steady state of consté@thiiz [10] proposed the extremal principle
density p with some constant nonequilibrium currejtp).

—, 2
P+—P-

In the limit of large system size the current densiGD) j= max j(p) for p_>p,
relation j(p), measured in systems with fixed density and pelps p-]
periodic boundary conditions, characterizes the bulk behav- : ©)

j= min j(p) for p_<p.,

ior of the model under consideration and shows up, e.g., as pelp pal
ELP— P+

fundamental diagram in traffic flow. Clearf{0)=j(1)=0

due to a total lack of particles resp. holes and for the most
simple models, like the ASERp) has a single maximum in 034
between. In general the CD relation may have several
maxima with additional minima in betwedgree Fig. 1 for a
example. Krug [8] asked for the emerging steady state for
gas with given CD relatiorj(p) and given injection rates
{a} and drainage ratelg3}. He partially answered the ques- J(?)
tion by proposing a maximum principle for the nonequilib-
rium current:j=ma>g,€[0,p0]j(p). The steady state is the 0.1+

maximum of the CD relationj(p) over the interval 0,p¢],

where the boundary density jig at the left side and zero at

the right side. Here the boundary densities were the meat 0.0 ,
densities at the leftmost and rightmost lattice site. For simple 0.0 0.5 1.0
examples with an injection rate and a drainage ra{e there r

exist monotonous relations between these boundary densities iG. 1. Bulk CD relationj(p) for deterministic bulk dynamics
and the rates, e.gp,_=a andp,=1— for the ASEP. S0 (p=0) together with MC data for open boundary conditions taken
one can plot the phase diagram equally well in terms of thelong lines with boundary rates a=c—8 for ¢
ratese andg or in terms of the boundary densities. For more=1.5,1.0,0.6,0.3,0.1 from top to bottom.
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with left boundary densityp_ and right boundary density 0351
p. . For CD relations with two maxima this principle pre-

dicts a new minimal current phase that was confirmed by
MC simulations[10]. Recently, Antal and Schz [11] pre- 0251
sented data for a lattice gas with attractive interactions thal
contained an additional phase not predicted by the extrema., = 0207

J(e)

0.30 +

principle (3), when using boundary densitigs. =a and o151
p+=1—, while the rest of the phase diagram was predicted
faithfully. This casts some doubt on the general validity of 0.10
Eqg. (3). In the sequel | discuss MC data for another one-
dimensional lattice gas, where the minimal current phase is ey
absent. The goal of this paper is then to interpret(Bygin a 0.00 , ,
way that the aforementioned cases can be included. 0.0 0.5 1.0
Let us consider a lattice gas of particles driven to the right @
according to the rules FIG. 2. Steady-state currents in a “semi-infinite” system for
deterministic bulk dynamics as functions of the injection rate
1100-1010  with probability *-p, The upper curvétriangles is j o)() for an initially empty system
and the lower curvédiamonds is j(12)(@) for a system prepared
1101—-1011 with probability *p, initially in the current zero state with density 1/2. Symbols denote

(4) MC data and full lines analytical fits as given in the text.
0100—-0010 with probability *p,
| simulated a system of side=5600 upto 16 time steps
0101-0011 with probability p, to obtain averages for current and density after an initial 10
) L time steps necessary to reach the steady state. The results of
wherepe[0,1]. The CD relation for deterministic bulk dy- e simulations are displayed in Figs. 1-3. Figure 2 shows
namics aip=0 is plotted in Fig. 1. Recently a rigorous deri- ¢ steady-state currents for a system loaded with aate
vation of its shape was givei2]. A small but finitep>0  \yhen the left boundary determines the steady state. The up-
leads to a current density relation W|th dlfferentlfable extremaper curve(triangles is the resulting currenf (@) when
and c_iecreased currents for the maxima but a increased cUft. fills an initially empty system, setting=1 at the right
rent jmin>0 for the minimum. Note that fop=1/2 the 4 ndary. The lower curvediamonds is the resulting cur-
model is just the totally asymmetric simple exclusion procesggnt jwz(@), where initially the zero current state
under a parallel stochastic update with a single humped Parg-  0101a . ..) wasprepared and stabilized by forbidding
bolic CD relation. For some value @fin between the mini-
mum in the CD relation vanishes. We first discuss the deter- ,
ministic casep=0 and afterwards check the influence of
stochastic parallel dynamics for a value pf 0.0625. The
nearest neighbor repulsion leads to a zero current stat
(...0101Q...) atdensity p=1/2. Using a deterministic 0.8
parallel update leads to a piecewise linear CD relation with
maximal current =1/3 for the densitiep=1/3 andp=2/3

and zero current fop=0,1/2,1 (see Fig. 1L The creation 061
rates{a} at the left boundary and the annihilation ra{gs
at the right boundary are chosen as 3
1/00—1|10 with probability «, 04+ /
1|01—1|11 with probability «, /ﬁf
®) 021

110—10/0 with probability 3,

01/0—000 with probability S.

0.0 : |
The hopping rates of the leftmost and the next to rightmost 0.0 0.5 1.0
site are governed by the bulk rules in conjunction with the a
constant dummie boundary sites added in €. Note that FIG. 3. Phase diagram for deterministic bulk dynamics as a

the automaton is symmetric under interchangeAadnd O,  fynction of the injection rater and the drainage raf@. Diamonds
combined with a reversion of the driving direction. Our denote the MC data for the first order transitions and the connecting
choice of boundary conditions renders the minimal currenfines denote the analytical fits. The full line with two arrows follows
statej(1/2)=0 at densityp=1/2 unstable and thereby de- a typical path of constant current and density, but with density
stroys the minimal current phase. jumps at the phase transitions.
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the process G0—000, while allowing the 1f0—000  properties. Any influence of thg8} must be mediated by the
with probability 1 at the right boundary. The boundary con-bulk state[p,j(p)] via a shock as explained above. Thus
ditions of the right side were choosen in a way that no shoclp _({a}) contains all the bulk densities of a semi-infinite
traveled from the right to the left boundary for any value of system that are supportédr controlled by some value of
«, to mimic the behavior of a semi-infinite system. Inspiredthe rateq «}. This can be only bulk densities wharg>0 so

by the result of the analytical solution for an ASEP with fully that a perturbation caused by a small change of tilecan
parallel updatd13] | conjectured the following analytical spread into the bulk. In addition | include bulk dominated

forms for the currents: regions where andj are constant under variation afinto
p_({a}) andj_({a}) if they can be reached by tuning the
a—a’+ad rates{a}.

(6) For every lattice gas with a single hump in the CD rela-
tion this choice implies that one has always<p, and

In Fig. 2 these formulas are plotted as full lines, which per-Inerefore only the minimization part of E(B) is needed. If

fectly fit the MC data denoted by symbols. It turns out thatthe maxi.mum current phase occurs it is already containgd in
these two currents are enough to construct the phase diagrdff refationsp_(i«}) andp. ({8}). The advantage of this
displayed in Fig. 3. | find three lines of first order transitions ¢Noicé ofp_ and p.. is, that the reentrance transition ob-
between low density phases whesedetermines the bulk S€rved in[11] is now predicted by Eq(3) sincep, in our
density p=p_(a) and the steady-state currefta), and definition, after reaching the maximal current phase from
high density phases, whefedetermines these values. Along @P0ve with further increase of the drainage ratencreases
the line a= g, the current is equal thy,(), while it is again. The minimization part of Eq43) then prefersp . in-

equal toj (o)(a) along the ling8= 1. Together with the con- stead of the maximal current phase offered by the injection

dition that the current is continous at the transition this en-Side'

ables us to derive the analytical expression Generally the relationp _({a}) andp. ({B}) have some
nonuniversal dependence of the microscopic transition rates,

as the CD relation itself depends on the bulk transition prob-
=— 7) abilities, and they are needed as input to determine the phase
1-2a+2a? diagram via Eq(3). In our example the bulk CD relation has
two branches withv ;>0 sop_({a}) andj_({a}) can be
for the upper curved transition line in Fig. 2, simply by double valued relations that is indeed the case for our choice
equating the two currents of EF) with @= g in j12(@).  of boundary conditions, as can be seen in Fig. 2. For a given
The lower line then follows by symmetry. | expect E@8)  set of{«} and{B} we have to put all four combinations of
and(7) and corresponding formulas for the dengitywhich p_oed), p_aral), p+{B}), andp. 1z({B}) in
follow via the CD relation, to be exact analytical results in Eq. (3). This leads to
the thermodynamic limit. Figure 1 displays, besides the bulk

- a -
Jan(a)= 1124 J(oy)a)= 15243

a—a’+a®

CD relation measured in systems with periodic boundary min{j (p_(0)(@)),j (p+(0)( BN} (8
conditions, MC data fof(p) taken along linesx=c— g for
c=15,1.0,0.6,0.3,0.1 from top to bottom. The data lie, min{j (p— 0)(@)),j (p+(12( BN}, 9
modulo finite size effects, on the bulk CD relation but exhibit
density jumps at the transition lines, while the current is maX{j (p+ 12)(B8)).J (p— (12 @)}, (10
continous.

How can we explain these findings in accordance with the min{j (p_ 12y(@)). i (p+0)( B}, (11)

extremal principle(3)? The crucial question is how the

“boundary” densitiesp_ andp ., are defined. For the ASEP where just the smaller or larger of both currents is chosen.
it is possible to take the reservoir densitiesand 1- 8, but  Extremalization on the whole intervgb_,p. ] as in Eq.(3)

this turns out to be inadequate for more complicated system$ not necessary since the extremal current phases selected
As it stands Eq(3) tells us about the evolution of a shock thereby are already contained in our definition of the densi-
with limiting densitiesp_ and p, [10]. In the casep_ ties. The conditiong8)—(11) determine unambigously the
<p; we havevg>0 forj,.>j_ andvs<O forj,<j_,i.e., phase diagram of Fig. 3. Presumably, E@~—(11) are suf-

the region of smaller current grows and vice versagar ficient to determine the phase diagram for all double humped
>p . In addition if there is a minimum of(p) in the in-  CD relations. Note that in our model there ji§ _ o)(«))
terval[p_,p. ] the shock will be unstable and split into two >j(p_(1/»(a)) for all « andj(p; o)(@))>](p (112(a)) for
shocks with limiting densitiep_ , pyin @ndpmin,p+ , €volv-  all 8. Thus Eqs(9)—(11) imply (8). Figure 3 lacks any kind
ing to the left resp. right, thereby creating the minimal cur-of extended bulk dominated extremal current phases. This
rent phase. Such a steady state we may call bulk dominatetlas slightly different reasons for the maximal current phases
Similar considerations apply for the cagse>p,, where a and the minimal current phase. The lack of maximal current
maximal current phase can occur. But how areandp . phases clearly is due to the deterministic bulk dynamics,
connected to the microscopic boundary conditi¢a$ and  which prevents the necessary overfeeding efféct4]. Such
{B}? Due to the short range nature of the interactions on@hases immediately appear if one allows for probabilipes
expectsyp _({a}) to be a function only of th¢a} and of bulk <1 in Eq.(4). The absence of the minimal current phase is,
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1 . —F . . phases of high and low density. The diagonal one contains
both maximal current phases separated by a diffusing shock
and thereby marks the aréastead of a ling where the first
order transition between the pure maximal current phases
08 - i occur(see remark16] of [10]). In contrast the minimal cur-
rent phase is still restricted to the single point in the lower
7 ¥ left corner of Fig. 4, where four lines of first order transitions
meet. To stabilize it in a finite range one has to supress the

06 processes |[D1—1|11 and 0i0—00/0 at the boundaries.
8 I The phase diagram of Fig. 4 can be obtained by applying
Eqgs.(8)—(11) to the apropriate currents measured in “semi-
04 - ] infinite” systems. In conclusion | showed how the phase

diagram of some one-dimensional lattice gases with open
boundaries can be obtained by the extremal prindipleWe
argued that the boundary densities used in @j.are the
0.2 - . bulk densities of a semi-infinite system and that they are
restricted to densities, where the collective veloeityallows
a perturbation by the boundary to move into the bulk. The
0 . . . . continous transitions to a extremal current phase are already
0 0.2 0.4 0.6 0.8 1 present in these boundary densities, while the first order tran-
@ sition mediated by a shock of finite height are determined by
FIG. 4. Phase diagram for stochastic bulk dynamigs ( Egs.(8)—(11). More complicated systems are likely to lead
=0.0625) as a function of the injection rateand the drainage rate t0 new surprises, just to mention systems with inhomoge-
B. Diamonds denote the MC data for the phase transitions. nious steady states, which occur frequently in higher dimen-

L sions[15] but also in one-dimensional two species systems
as we have seen, due to the fact, that it is instable for ouyii spontaneously broken symmef{iy6].

choice of boundary conditions. To check these claims | per-

formed simulations with a stochastic parallel update setting | am grateful to Gunter Schz for suggesting the prob-
p=0.0625. Figure 4 displays the phase diagram, again medem, numerous useful discussions and for a lot of comments
sured forL=5600. Three different maximal current phaseson the manuscript and to Joachim Krug for a critical reading
appear in the rectangles visible in the upper right corner. Thef the manuscript. This work was partially supported by SFB
off diagonal ones contain the two pure maximal current237 Unordnung und grosse Fluktuationen.
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